函数值域(函数值域例题)

本篇文章给大家谈谈函数值域,函数函数以及函数值域例题对应的值域值域知识点,希望对各位有所帮助,例题不要忘了收藏本站喔。函数函数

函数的值域是什么意思

值域:函数经典定义中,因变量改变而改变的例题取值范围叫做这个函数的值域,在函数现代定义中是函数函数指定义域中所有元素在某个对应法则下对应的所有的象所组成的集合。

f:A→B中,值域值域值域是例题集合B的子集。如:f(x)=x,函数函数那么f(x)的取值范围就是函数f(x)的值域。在实数分析中,值域值域函数的例题值域是实数,而在复数域中,函数函数值域是值域值域复数。

扩展资料

函数经典定义中,例题因变量的取值范围叫做这个函数的值域,在函数现代定义中是指定义域中所有元素在某个对应法则下对应的所有的象所组成的集合。即{ y∣y=f(x),x∈D}

常见函数值域:

y=kx+b (k≠0)的值域为R

y=k/x 的值域为(-∞,0)∪(0,+∞)

y=√x的值域为x≥0

y=ax^2+bx+c 当a0时,值域为 [4ac-b^2/4a,+∞) ;

当a0时,值域为(-∞,4ac-b^2/4a]

y=a^x 的值域为 (0,+∞)

y=lgx的值域为R

函数的值域怎么算

求函数的值域的常用方法如下:

1、图像法:根据函数图象,观察最高点和最低点的纵坐标。

2、配方法:利用二次函数的配方法求值域,需注意自变量的取值范围。

3、单调性法:利用二次函数的顶点式或对称轴,再根据单调性来求值域。

4、反函数法:若函数存在反函数,可以通过求其反函数,确定其定义域就是原函数的值域。

5、换元法:包含代数换元、三角换元两种方法,换元后要特别注意新变量的范围。

6、判别式法:判别式法即利用二次函数的判别式求值域。

7、不等式法:利用a+b≥2√ab(其中a,b∈R+)求函数值域时,要时刻注意不等式成立的条件,即“一正,二定,三相等”。

8、折叠三角代换法:利用基本的三角关系式,进行简化求值。例如:a的平方+b的平方=1,c的平方+d的平方=1,求证:ac+bd小于或等于1。直接计算麻烦,用三角代换法比较简单。做法:设a=sinx ,b=cosx,c=siny ,d=cosy,则ac+bd=sinx*siny+cosx*cosy =cos(y-x),因为我们知道cos(y-x)小于等于1,所以不等式成立。

求函数值域方法

函数值域的求法可以通过观察法、配方法、常数分离法、换元法、逆求法、基本不等式法、求导法、数形结合法和判别式法等方法来求。

一、配方法:将函数配方成顶点式的格式,再根据函数的定义域,求得函数的值域。

二、常数分离:这一般是对于分数形式的函数来说的,将分子上的函数尽量配成与分母相同的形式,进行常数分离,求得值域。

三、逆求法:对于y=某x的形式,可用逆求法,表示为x=某y,此时可看y的限制范围,就是原式的值域了。

四、换元法:对于函数的某一部分,较复杂或生疏,可用换元法,将函数转变成我们熟悉的形式,从而求解。

五、单调性:可先求出函数的单调性(注意先求定义域),根据单调性在定义域上求出函数的值域。

六、基本不等式:根据我们学过的基本不等式,可将函数转换成可运用基本不等式的形式,以此来求值域。

七、数形结合:可根据函数给出的式子,画出函数的图形,在图形上找出对应点求出值域。

八、求导法:求出函数的导数,观察函数的定义域,将端点值与极值比较,求出最大值与最小值,就可得到值域了。

函数值域的概念

设x和y是两个变量,D是实数集的某个子集,若对于D中的每个值x,变量y按照一定的法则有一个确定的值y与之对应,称变量y为变量x的函数,记作 y=f(x).数集D称为函数的定义域,集合B被对应到实数的集合就是这个函数的值域。

函数的值域怎么求

其没有固定的方法和模式。但常用方法有:

(1)直接法:从变量x的范围出发,推出y=f(x)的取值范围;

(2)配方法:配方法是求“二次函数类”值域的基本方法,形如f(x)=af^(x)+bf(x)+c的函数的值域问题,均可使用配方法

(3)反函数法:利用函数和它的反函数的定义域与值域的互逆关系,通过反函数的定义域,得到原函数的值域。形如y=cx+d/ax+b(a≠0)的函数均可使用反函数法。此外,这种类型的函数值域也可使用“分离常数法”求解。

(4)换元法:运用代数或三角代换,将所给函数化成值域容易确定的另一函数,从而求得原函数的值域。形如y=ax+b±根号cx+d(a、b、c、d均为常数,且a≠0)的函数常用此法求解。举些例子吧!

(1)y=4-根号3+2x-x^

此题就得用配方法:由3+2x-x^≥0,得-1≤x≤3.

∵y=4-根号-1(x-1)^+4,∴当x=1时,ymin=4-2=2.

当x=-1或3时,ymax=4.

∴函数值域为[2,4]

(2)y=2x+根号1-2x

此题用换元法:

令t=根号1-2x(t≥0),则x=1-t^/2

∵y=-t^+t+1=-(t-1/2)^+5/4,

∵当t=1/2即x=3/8时,ymax=5/4,无最小值.

∴函数值域为(-∞,5/4)

(3)y=1-x/2x+5

用分离常数法

∵y=-1/2+7/2/2x+5,

7/2/2x+5≠0,

∴y≠-1/2

函数值域的介绍就聊到这里吧,感谢你花时间阅读本站内容,更多关于函数值域例题、函数值域的信息别忘了在本站进行查找喔。